Generalized Harish-Chandra Modules: A New Direction in the Structure Theory of Representations

نویسندگان

  • Ivan Penkov
  • Gregg Zuckerman
چکیده

Let g be a reductive Lie algebra over C. We say that a g-module M is a generalized Harish-Chandra module if, for some subalgebra k ⊂ g, M is locally k-finite and has finite k-multiplicities. We believe that the problem of classifying all irreducible generalized Harish-Chandra modules could be tractable. In this paper, we review the recent success with the case when k is a Cartan subalgebra. We also review the recent determination of which reductive in g subalgebras k are essential to a classification. Finally, we present in detail the emerging picture for the case when k is a principal 3-dimensional subalgebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...

متن کامل

On Quotients of Hom-functors and Representations of Nite General Linear Groups Ii

This is a second paper on quotients of Hom-functors and their applications to the representation theory of nite general linear groups in non-describing characteristic. After some general result on quotients of Hom-functors and their connection to Harish-Chandra theory these contructions are used to obtain a full classiication of thè-modular irreducible representations of GL n (q) for some prime...

متن کامل

To the memory of Armand Borel GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized HarishChandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simpl...

متن کامل

Algebraic methods in the theory of generalized Harish-Chandra modules

This paper is a review of results on generalized Harish-Chandra modules in the framework of cohomological induction. The main results, obtained during the last 10 years, concern the structure of the fundamental series of (g, k)−modules, where g is a semisimple Lie algebra and k is an arbitrary algebraic reductive in g subalgebra. These results lead to a classification of simple (g, k)−modules o...

متن کامل

On the Structure of the Fundamental Series of Generalized Harish-chandra Modules

We continue the study of the fundamental series of generalized Harish-Chandra modules initiated in [PZ2]. Generalized Harish-Chandra modules are (g, k)-modules of finite type where g is a semisimple Lie algebra and k ⊂ g is a reductive in g subalgebra. A first result of the present paper is that a fundamental series module is a g-module of finite length. We then define the notions of strongly a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008